<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=Content-Type content="text/html; charset=us-ascii">
<META content="MSHTML 6.00.2900.3059" name=GENERATOR></HEAD>
<BODY>
<DIV dir=ltr align=left><SPAN class=970213918-22022007><FONT face=Arial 
color=#0000ff size=2>Elena Nabieva will present her preFPO on Thursday February 
27 at 11:15AM in </FONT></SPAN></DIV>
<DIV dir=ltr align=left><SPAN class=970213918-22022007><FONT face=Arial 
color=#0000ff size=2>Room 253, Carl Icahn Lab.&nbsp; The members of her 
committee are:&nbsp; Mona Singh, </FONT></SPAN></DIV>
<DIV dir=ltr align=left><SPAN class=970213918-22022007><FONT face=Arial 
color=#0000ff size=2>advisor; Tom Funkhouser, Olga Troyanskaya, readers; Bernard 
Chazelle, </FONT></SPAN></DIV>
<DIV dir=ltr align=left><SPAN class=970213918-22022007><FONT face=Arial 
color=#0000ff size=2>Ned Wingreen (MolBio), nonreaders.&nbsp; Everyone is 
invited to attend her talk.</FONT></SPAN></DIV>
<DIV dir=ltr align=left><SPAN class=970213918-22022007><FONT face=Arial 
color=#0000ff size=2>Her abstract follows below.</FONT></SPAN></DIV>
<DIV dir=ltr align=left><SPAN class=970213918-22022007><FONT face=Arial 
color=#0000ff 
size=2>------------------------------</FONT></SPAN></DIV><BR>Abstract:<BR>
<P>Exploring the interplay between topology and function in protein interaction 
networks<BR><BR>The emergence in recent years of numerous high-througphut 
experimental techniques in biology has lead to a new, genome-scale approach 
towards biological research. This high-throughput biology faces two 
complementary tasks: obtaining data on genomic scale and making sense of this 
data.&nbsp; It is the second task where computer scientists working in 
computational biology can make great contribution. <BR><BR>One type of data 
obtained by high-throughput experiments is information about interactions among 
proteins, such as physical protein-protein interactions. &nbsp;This 
information<SPAN> </SPAN>can bring scientists closer to a solution to one of the 
most important problems in biology: understanding the role that different 
proteins play in the cell and the interplay among them.<BR><BR>In my work, I 
look at the relationship between protein function and the protein's context in 
the interaction network from two angles:&nbsp; using interaction networks and 
information about other proteins to predict a protein's cellular role, and 
finding schemas, or recurring patterns of interaction among different types of 
proteins.<BR><BR>In the first part of the talk, I explore the use of physical 
protein interaction networks for predicting the function of proteins.&nbsp; 
First, using as illustration some of the existing approaches to this problem, I 
discuss which topological properties of interaction networks should be taken 
into account by algorithms for predicting protein function based on physical 
interaction networks.&nbsp; Using these desiderata as guidelines, I introduce an 
original network-flow based algorithm called FunctionalFlow that exploits the 
underlying structure of protein interaction maps in order to predict protein 
function. In cross-validation testing on the yeast proteome, I show that 
FunctionalFlow has improved performance over previous methods in predicting the 
function of proteins with few (or no) annotated protein neighbors. I demonstrate 
that FunctionalFlow performs well because it takes advantage of both network 
topology and some measure of locality. Finally, I show that performance can be 
improved substantially as we consider multiple data sources and use them to 
create weighted interaction networks.<BR><BR>In the second part of the talk, I 
take a different view at the topology-function relationship and use known 
information about protein molecular function and the physical interaction 
network to attempt to uncover organizational principles of the network.&nbsp; In 
this bottom-up view, I examine the networks from the perspective of ``pathway 
schemas,'' or recurring patterns of interaction among different types of 
proteins.&nbsp; Proteins in these schemas tend to &nbsp;act as functional units 
within diverse biological processes. I discuss computational methods for 
automatically uncovering statistically over-represented pathway schemas in 
protein-protein interaction maps, and touch upon the comparative-interactomics 
aspects of this problem. &nbsp;Coming back to the task of improving our 
understanding of protein function, I conclude by demonstrating how 
overrepresented schemas can be used to gain new insights about the biological 
function of proteins.</P></BODY></HTML>