Speaker: Kostis Kaffes, Stanford University
Date: Monday, March 14, 2022
Time: 12:30pm EST
Location: Zoom Webinar
Host: Ravi Netravali
Event page: https://www.cs.princeton.edu/events/26171   
Please register here: https://princeton.zoom.us/webinar/register/WN_Nn4iOb-mRqSEJbGsbzg5uQ   

Title: Solving the Cloud Efficiency Crisis with Fast and Accessible Scheduling

Abstract:  Operating systems (OS) specialization is necessary as the one-size-fits-all approach of fundamental OS operations such as scheduling is incompatible with today's diverse application landscape. Such specialization can improve application performance and cloud platform efficiency by an order of magnitude or more. Towards this goal, I will first discuss Shinjuku, a specialized OS that supports an order of magnitude higher load and lower tail latency than state-of-the-art systems by enabling better scheduling. Shinjuku leverages hardware support for virtualization to preempt as often as every 5 microseconds and disproves the conventional wisdom that interrupts are incompatible with microsecond timescales. Then, I will present Syrup, a framework that enables everyday application developers to specify custom scheduling policies easily and safely deploy them across different layers of the stack over existing operating systems like Linux, bringing the benefits of specialized scheduling to everyone. For example, Syrup allowed us to implement policies that previously required specialized dataplanes in less than 20 lines of code and improve the performance of an in-memory database by 8x without needing any application modification.

Bio: Kostis Kaffes is a final-year Ph.D. candidate in Electrical Engineering at Stanford University, advised by Christos Kozyrakis. He is broadly interested in computer systems, cloud computing, and scheduling. His thesis focuses on end-host, rack-scale, and cluster-scale scheduling for microsecond-scale tail latency with the goal of improving efficiency in the cloud. Recently, he has been looking for ways to make it easier to implement and deploy custom scheduling policies across different layers of the stack. Kostis's research has been supported by a Facebook Research Award and various scholarships and fellowships from Stanford, A.G. Leventis Foundation, and Gerondelis Foundation. Prior to Stanford, he received his undergraduate degree in Electrical and Computer Engineering from the National Technical University of Athens in Greece.