[Ml-stat-talks] Tuesday (10/23): Mark Handcock on "Statistical Methods for Combining Survey and Population-level Data"

Matthew J. Salganik mjs3 at Princeton.EDU
Wed Oct 17 12:51:06 EDT 2012

Hi everyone,

Mark Handcock from the Department of Statistics at UCLA will be presenting at the OPR colloquium on Tuesday, October 23rd at noon in Wallace 300.  Mark routinely does great work at the intersection of statistics and the social sciences.  More information on the talk is below.

Take care,

"Statistical Methods for Combining Survey and Population-level Data"

Mark S. Handcock
Department of Statistics
California Center for Population Research University of California - Los Angeles

In many situations information from a sample of individuals can be supplemented by information from population level data on the relationship of the explanatory variable with the dependent variables.
Sources of population level data include a census, vital events registration systems and other governmental administrative record systems.  They contain too few variables, however, to estimate demographically interesting models. Thus in a typical situation the estimation is done by using sample survey data alone, and the information from complete enumeration procedures is ignored.

Sample survey data, however, are subjected to sampling error and bias due to non- response, whereas population level data are comparatively free of sampling error and typically less biased from the effects of non-response.

In this talk we will review statistical methods for the incorporation of population level information and show it can lead to statistically more accurate estimates and better inference.  Population level information can be incorporated via constraints on functions of the model parameters. In general the constraints are non-linear, making the task of maximum likelihood estimation more difficult.  We present an alternative approach exploiting the notion of an empirical likelihood.

We give an application to demographic hazard modeling by combining panel survey data with birth registration data to estimate annual birth probabilities by parity.

This is joint work with Sanjay Chaudhuri (National University of Singapore) and Michael S. Rendall (University of Maryland).


Matthew Salganik
Department of Sociology
Princeton University
145 Wallace Hall
Princeton, NJ 08544
609-258-8867 (voice)
609-258-2180 (fax)

More information about the Ml-stat-talks mailing list