Haoyu Zhang FPO on Thursday, 5/17/2018, at 1:00 pm in CS 302.
Haoyu Zhang will present his FPO on Thursday, 5/17/2018, at 1:00pm in CS 302. The members of his committee are Mike Freedman (advisor), Kyle Jamieson, Wyatt Lloyd (readers), Kai Li, Jennifer Rexford (examiners). Title: Resource Management for Advanced Data Analytics at Large Scale Abstract: The rapidly growing size of data and the complexity of analytics present new challenges for large-scale data analytics systems. Modern distributed computing frameworks need to support not only embarrassingly parallelizable batch jobs, but also advanced applications analyzing text and multimedia data using complex queries and machine learning (ML) models. Given the computation and storage costs of advanced data analytics, resource management is crucial. New applications and workloads expose vastly different characteristics which make traditional scheduling systems inadequate, and at the same time offer great opportunities that lead to new system designs for better performance. In this thesis, we present resource management systems that significantly improve cloud resource efficiency by leveraging the specific characteristics of advanced data analytics applications. We present the design and implementation of the following systems: (i) VideoStorm: a video analytics system that scales to process thousands of vision queries on live video streams over large clusters. VideoStorm's offline profiler generates resource-quality profiles for vision queries, and its online scheduler allocates resources to maximize performance in terms of vision processing quality and lag. (ii) SLAQ: a cluster scheduling system for approximate ML training jobs that aims to maximize the overall model quality. In iterative and exploratory training settings, better models can be obtained faster by directing resources to jobs with the most potential for improvement. SLAQ allocates resources to maximize the cluster-wide quality improvement based on highly-tailored model quality predictions. (iii) Riffle: an optimized shuffle service for big-data analytics frameworks that significantly improves I/O efficiency. The all-to-all data transfer (i.e., shuffle) in modern big-data systems (such as Spark and Hadoop) becomes the scaling bottleneck for multi-stage analytics jobs, due to the superlinear increase in disk I/O operations as data volume grows. Riffle boosts system performance by merging fragmented intermediate files and efficiently scheduling the merge operations. Taken together, this thesis demonstrates a novel set of methods in both job-level and task-level scheduling for building scalable, highly-efficient, and cost-effective resource management systems. We have performed extensive evaluation with real production workloads, and our results show significant improvement in resource efficiency, job completion time, and system throughput for advanced data analytics. Barbara A. Mooring Interim Graduate Coordinator Computer Science Department Princeton University
Haoyu Zhang will present his FPO tomorrow Thursday, 5/17/2018, at 1:00pm in CS 302. The members of his committee are Mike Freedman (advisor), Kyle Jamieson, Wyatt Lloyd (readers), Kai Li, Jennifer Rexford (examiners). Title: Resource Management for Advanced Data Analytics at Large Scale Abstract: The rapidly growing size of data and the complexity of analytics present new challenges for large-scale data analytics systems. Modern distributed computing frameworks need to support not only embarrassingly parallelizable batch jobs, but also advanced applications analyzing text and multimedia data using complex queries and machine learning (ML) models. Given the computation and storage costs of advanced data analytics, resource management is crucial. New applications and workloads expose vastly different characteristics which make traditional scheduling systems inadequate, and at the same time offer great opportunities that lead to new system designs for better performance. In this thesis, we present resource management systems that significantly improve cloud resource efficiency by leveraging the specific characteristics of advanced data analytics applications. We present the design and implementation of the following systems: (i) VideoStorm: a video analytics system that scales to process thousands of vision queries on live video streams over large clusters. VideoStorm's offline profiler generates resource-quality profiles for vision queries, and its online scheduler allocates resources to maximize performance in terms of vision processing quality and lag. (ii) SLAQ: a cluster scheduling system for approximate ML training jobs that aims to maximize the overall model quality. In iterative and exploratory training settings, better models can be obtained faster by directing resources to jobs with the most potential for improvement. SLAQ allocates resources to maximize the cluster-wide quality improvement based on highly-tailored model quality predictions. (iii) Riffle: an optimized shuffle service for big-data analytics frameworks that significantly improves I/O efficiency. The all-to-all data transfer (i.e., shuffle) in modern big-data systems (such as Spark and Hadoop) becomes the scaling bottleneck for multi-stage analytics jobs, due to the superlinear increase in disk I/O operations as data volume grows. Riffle boosts system performance by merging fragmented intermediate files and efficiently scheduling the merge operations. Taken together, this thesis demonstrates a novel set of methods in both job-level and task-level scheduling for building scalable, highly-efficient, and cost-effective resource management systems. We have performed extensive evaluation with real production workloads, and our results show significant improvement in resource efficiency, job completion time, and system throughput for advanced data analytics. Barbara A. Mooring Interim Graduate Coordinator Computer Science Department Princeton University -
Haoyu Zhang will present his FPO today, Thursday, May 17, 2018, at 1:00pm in CS 302. The members of his committee are Mike Freedman (advisor), Kyle Jamieson, Wyatt Lloyd (readers), Kai Li, Jennifer Rexford (examiners). Title: Resource Management for Advanced Data Analytics at Large Scale Abstract: The rapidly growing size of data and the complexity of analytics present new challenges for large-scale data analytics systems. Modern distributed computing frameworks need to support not only embarrassingly parallelizable batch jobs, but also advanced applications analyzing text and multimedia data using complex queries and machine learning (ML) models. Given the computation and storage costs of advanced data analytics, resource management is crucial. New applications and workloads expose vastly different characteristics which make traditional scheduling systems inadequate, and at the same time offer great opportunities that lead to new system designs for better performance. In this thesis, we present resource management systems that significantly improve cloud resource efficiency by leveraging the specific characteristics of advanced data analytics applications. We present the design and implementation of the following systems: (i) VideoStorm: a video analytics system that scales to process thousands of vision queries on live video streams over large clusters. VideoStorm's offline profiler generates resource-quality profiles for vision queries, and its online scheduler allocates resources to maximize performance in terms of vision processing quality and lag. (ii) SLAQ: a cluster scheduling system for approximate ML training jobs that aims to maximize the overall model quality. In iterative and exploratory training settings, better models can be obtained faster by directing resources to jobs with the most potential for improvement. SLAQ allocates resources to maximize the cluster-wide quality improvement based on highly-tailored model quality predictions. (iii) Riffle: an optimized shuffle service for big-data analytics frameworks that significantly improves I/O efficiency. The all-to-all data transfer (i.e., shuffle) in modern big-data systems (such as Spark and Hadoop) becomes the scaling bottleneck for multi-stage analytics jobs, due to the superlinear increase in disk I/O operations as data volume grows. Riffle boosts system performance by merging fragmented intermediate files and efficiently scheduling the merge operations. Taken together, this thesis demonstrates a novel set of methods in both job-level and task-level scheduling for building scalable, highly-efficient, and cost-effective resource management systems. We have performed extensive evaluation with real production workloads, and our results show significant improvement in resource efficiency, job completion time, and system throughput for advanced data analytics. Barbara A. Mooring Interim Graduate Coordinator Computer Science Department Princeton University - _______________________________________________ talks mailing list talks@lists.cs.princeton.edu To edit subscription settings or remove yourself, use this link: https://lists.cs.princeton.edu/mailman/listinfo/talks
participants (1)
-
Barbara A. Mooring