Colloquium Speaker, Mark Braverman, Tuesday Feb 15
Average-case solutions to hard problems Mark Braverman , University of Toronto Tuesday, February 15, 2011- 4:30pm Computer Science, 105 Many important computational problems are affected by various computational barriers that make them intractable in the worst case. In spite of this, it is often possible to get around these barriers and produce useful, if not optimal solutions for most instances of the problem. I will use several examples from my work to illustrate how considering an average or a typical case of the problem can be used to produce useful algorithms and mechanisms. The first example deals with the problem of assigning medical graduates to residency programs in the presence of married couples. The problem of finding a stable matching between residency programs and doctors without couples is solved by the famous Gale-Shapley algorithm. In the presence of couples, such a matching may not exist, and it is NP-hard to determine whether it exists or not. Still, in a large random market we show how to find a good stable outcome with high probability. The second example deals with aggregating noisy comparison signals, such as sport competition results, into a ranking most consistent with the observed signals. The worst-case version of the problem, known as the Minimum Feedback Arcset problem is NP-hard. We give an efficient algorithm for the average-case version of the problem.
participants (1)
-
Nicole E. Wagenblast