Uncertainty in Natural Image Segmentation
Eric Sudderth, Brown University
Wednesday, November 9, 2011, 4:30 PM
Computer Science Small Auditorium (Room 105)
We explore nonparametric Bayesian statistical models for image partitions which coherently model uncertainty in the size, shape, and structure of human image interpretations. Examining a large set of manually segmented scenes, we show that object frequencies and segment sizes both follow power law distributions, which are well modeled by the Pitman-Yor (PY) process. This generalization of the Dirichlet process leads to segmentation algorithms which automatically adapt their resolution to each image. Generalizing previous applications of PY priors, we use non-Markov Gaussian processes (GPs) to infer spatially contiguous segments which respect image boundaries. We show how GP covariance functions can be calibrated to accurately match the statistics of human segmentations, and that robust posterior inference is possible via a variational method, expectation propagation. The resulting method produces highly accurate segmentations of complex scenes, and hypothesizes multiple image partitions to capture the variability inherent in human scene interpretations.